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The Everglades Storm Water Treatment Areas: a found
ecological experiment in resilience
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=== ) \WWhat do we mean with Resilience?

* Ecological resilience (Holling, 1973)

Capacity of an ecosystem to tolerate disturbance without switching to a
gualitatively different state that is controlled by a different set of processes:
allows for evolution, adaptation and different species assemblages

N

\\\_-!  Engineering resilience (Pimm, 1984)
= Time taken to return to the pre-disturbance state, including

-— original characteristics (major headache in restoration, esp.
with climate change)
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and Agrifood

Perturbation
4 i i .
1 Engineering resilience

The ability of a system to
recover back towards the state it
was in prior to disturbance
(Holling 1973. Ann Rev Eco Syst)

Function

Resilience

Resistance

Time

Ecological resilience

The magnitude of
disturbance that can be
tolerated before the system
changes its state (Pimm 1984
Nature)




The adaptive cycle

The Adaptive Cycle

source. Holing, Gursikirsan and Ludeig by Queat of @ Theory of Adaptrve Chasge, 2007



Cranfield

“%= | Damped harmonic motion analogy

A mass on a spring is disturbed from its equilibrium position

1.5 —
o - = = = Under damped
1l, e Critically damped |,
O T Over damped

Displacement

Damper (c)

Spring (k)

A friction or damping force slowly restores the system to its equilibrium position.

Damping factor: { = 2%, critically damped when { =1
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“== | Damped harmonic motion analogy
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¢ is the damping factor
w is the natural frequency

SCIENTIFIC REP{%}RTS

OPEN Defining and quantifying the
resilience of responses to
disturbance: a conceptual and

. modelling approach from soil
T science

L.C.Todman?, F.C. Fraser?, R. Corstanje?, L. K. Deeks?, J. A, Harris?, M. Pawlett?, K. Ritz** &
A, P.Whitmore*

C is the initial slope
d is the final equilibrium

. Returns toa stable bevel of function closer 1o a reference level .

{i} Degres of return 8 _ . LI
(e, the initial level of function or level of a control sample)

{li) Return time-The time taken to reach the new R, Reaches the stable level of function more quickly T
.‘il.ul."l.t' IE\'I.'I ':I!. [unchion

{iii} Kate of return- The rate at which the responss
temds towards the stable level of function (ie F Has a steeper gradient during return T
related Lo the tl.rudie:u.l of the return period)

(iv) Efficiency B Has a smialler area under the response curve e is away from UT

the reference bevel for less time in total
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Putting this into practice
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Eeology, 93(2), 2012, pp. 264-271
@ 2012 by the Ecological Society of America

Robustness of variance and autocorrelation as indicators
of critical slowing down

VasiLis Dakos,"* Ecaert H. van Nis,' PaoLo D’Oporico,” AND MARTEN SCHEFFER'




Operationalising Resilience

Soil Resilience Category

B Adaptive
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So where are the STA’S In this?
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https://www.nps.gov/ever/learn/nature/cesires03-3.htm
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The Everglades Storm Water Treatment Areas: a found
ecological experiment in resilience

 The general purpose and function of the STAs is to reduce phosphorus (P) in runoff water prior
to discharging to the Everglades Protection Area.

« The controls on the P removal process are therefore set by the internal biogeochemical,
ecological and physical processes and conditions in each cell.

« They are intrinsically engineered systems, in which the ecosystem is manipulated to obtain a
desired outcome (retaining P, removing it from the water column).

« The systems are stochastic, with frequent changes in ecological structure (emergent marsh to
open water systems). The systems are also subject to frequent disturbance events (e.g.
hurricanes).

If we consider a naive, but exhaustive dataset over these systems then there may be three board
expectations represented in the data:

1) The systems broadly function as engineered systems,
2) The systems are self organizing ecological systems,
3) The systems are entirely stochastic



So how does this relate to resilience?

1) (The systems broadly function as engineered systems,
2) /The systems are self organizing ecological systems),

= SLET]) Al el > OCIl o

The Adaptive Cycle

........
..............

aource. Holing, Guadersan and [oredg In Quaat of & TReory of Adapene Crhange, 2000
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Exemplars of the outcome from the datamining exercise

Exemplars

Appra 7.3 miles
6-372

STA-3/4

Holey Land
Wwildlife

Management Area

el Cell Area (acres)

1A 3,082

18 3,504

2A 2,533

8 2,888 (includes PSTA Project cells)

3A 2,444

ELS 2114

Total 16,535
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Spatial Analysis of a non-stationary process
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=== | Modelling this a non-stationary process
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w== | Verification of models vs patterns
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w== | Verification of models vs patterns
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The Adaptive Cycle
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The Everglades Storm Water Treatment Areas: a found
ecological experiment

Temporal Analysis: how resilient are these systems?
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The Everglades Storm Water Treatment Areas: a found
ecological experiment in resilience

If we now go back to our expectations; three board expectations represented in the data:
1) The systems broadly function as engineered systems,
2) The systems are self organizing ecological systems,

3) The systems are entirely stochastic

Unsurprisingly, they seem to operate as a
hybrid of an engineered and self organizing
ecological system.

The Adaptive Cycle
o (Re)organization Conservation K

21 r Growth/Exploitation Collapse/Release Q
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